MAT 3749 2.3 Part III Handout

 Maximum Value

A function 
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 Local Maximum

A function 
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 The Extreme Value Theorem

If 
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 Lemma (Homework)
(a) If 
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(b) If 
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	Analysis




 Fermat’s Theorem
If 
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has a local maximum or minimum at 
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	Analysis

In light of the lemma, it makes sense to try using a contradiction.



	Conceptual Diagrams


	Case 1 
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	Then, by lemma, there is a neighborhood 
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	We want to show that 
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does not have a local maximum at 
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does not have a local minimum at 
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	In order to show that 
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 does not have a local maximum at 
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, what exactly do we need to demonstrate?

	

	Which of the two conditions, (1) or (2), is relevant?   

How does this condition implicate the statement above?

	


	Proof 

Suppose 
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Case 1 
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Then, by lemma, there is a neighborhood 
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Let 
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This is a contradiction to the fact that 
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 has a local maximum or minimum at 
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Case 2 
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Thus, if 
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 Rolle’s Theorem  

Let 
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 be continuous on 
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and differentiable on 
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	Analysis
We have 3 conditions here.  They may give us hints of how to approach this problem.  On the other hand, we need to make sure we make use of all of them.



	Conceptual Diagrams
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	After studying the conceptual diagrams, what do you think where we should choose 
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?


	

	Based on the first condition, which previous result(s) is/are relevant?


	

	Do we have enough to get exactly what we want to choose 
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? Why?


	

	Not the end of the world…at least we get a good starting point. 



	Since  f  is continuous on 
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If one of them is local, then we are done.  If both are not local, we need to think about what to do.



	If both are not local, where are 
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 and 
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?

	

	What is the implication of these locations?


	

	What does this tell you about the function 
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?


	

	Where to choose 
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	Good Job.  We have resolve the case when 
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 has absolute maximum / minimum values at both endpoints.
Now, let us look carefully how to finish our proof when 
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 has local maximum / minimum values at either 
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In the actual proof, it is cleaner to use the cases 
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	We can conclude that at least one of 
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	Short stop for reality check
Which of the 3 conditions that we have not used?

Which previous result(s) is/are relevant?


	

	Our gut feelings tell us that we need to use Fermat’s Theorem to show that 
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We need to check the two hypotheses before we use it.
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has a local maximum or minimum at 
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	We can now conclude that by Fermat’s Theorem, 
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	Proof

Since  f  is continuous on 
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Case 1
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 is a constant function on 
[image: image123.wmf](

)

,

ab

.  Thus, 
[image: image124.wmf](

)

(

)

0,,

fxxab

¢

="Î

.  

Choose any 
[image: image125.wmf](

)

,

cab

Î

, we have 
[image: image126.wmf](

)

0

fc

¢

=

.
Case 2
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Since 
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Thus, at least one of 
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Since 
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For all cases, we have proved that 
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 The Mean Value Theorem  

Let 
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 be continuous on 
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	Analysis
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	What are the seminaries and differences between Rolle’s Theorem and the MVT?
	Seminaries:

Differences:



	Guess an approach to prove the MVT.


	


	In order to use Rolle’s Theorem,  we need a function 
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 is differentiable on 
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3. 
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	It looks like the most distinctive feature of 
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Refer to the diagram here, what geometric objects are there besides the curve of 
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	Which of the two objects can be computed, given the hypothesis of the MVT?


	

	Refer to the diagram again. Use geometric insights to create a function 
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	What do we get from Rolle’s theorem?
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[image: image165.wmf]g

 is a straight line (linear polynomial), the slopes at all points are the same.  Thus,
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	Proof

Let 
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 is a polynomial, it is continuous on 
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By Rolle’s Theorem, 
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 Theorem If  
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 for all x in an interval 
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	Analysis
It is normal if you do not have a clue of how to proceed!



	What does the title of this slide suggest?


	

	Good observation!
Can we apply the MVT “directly”?


	

	Ok, let us look at closely what we want. We want to show that 
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Can you describe a constant function on 
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	 Verbally:

Mathematically:





	Follow this idea, let us choose two points on 
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     Let 
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	Draw a diagram to illustrate the positions of the 4 points 
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	What conclusion we can get from the MVT?
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	What is the relationship between 
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	Proof
Let 
[image: image204.wmf], 

xy

 be any two numbers in 
[image: image205.wmf](

)

,

ab

.  WLOG, let 
[image: image206.wmf]xy

<

.  


[image: image207.wmf]f

 is differentiable on 
[image: image208.wmf](

)

,

ab

 
[image: image209.wmf]Þ

 
[image: image210.wmf]f

 is continuous on 
[image: image211.wmf](

)

,

ab


Since 
[image: image212.wmf][

]

(

)

,,

xyab

Í

, 
[image: image213.wmf]f

 is continuous on 
[image: image214.wmf][

]

,

xy

.


[image: image215.wmf]f

 is differentiable on 
[image: image216.wmf](

)

,

ab

. 

Since 
[image: image217.wmf](

)

(

)

,,

xyab

Í

, 
[image: image218.wmf]f

 is differentiable on 
[image: image219.wmf](

)

,

xy

.

By the MVT, 
[image: image220.wmf](

)

,

cxy

$Î

 such that 


[image: image221.wmf]()()

()

0

()()0

()()

fyfx

fc

yx

fyfx

fyfx

-

¢

=

-

=

-=

=

 

Thus,  
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	Proof

	
[image: image228]



Last Edit: 10/28/2021 4:26 PM
PAGE  
9

[image: image1.wmf]f

_1350064711.unknown

_1350068217.unknown

_1382521405.unknown

_1382526344.unknown

_1382558838.unknown

_1664981546.unknown

_1664981673.unknown

_1664983996.unknown

_1665489550.unknown

_1665489551.unknown

_1664984387.unknown

_1664981679.unknown

_1664981886.unknown

_1664981606.unknown

_1664981640.unknown

_1664981630.unknown

_1664981571.unknown

_1664981586.unknown

_1664981555.unknown

_1383227284.unknown

_1664980541.unknown

_1664981231.unknown

_1664981528.unknown

_1664981537.unknown

_1664980801.unknown

_1664980993.unknown

_1664980602.unknown

_1383227285.unknown

_1664979897.unknown

_1382558902.unknown

_1382731622.unknown

_1382731674.unknown

_1382731477.unknown

_1382558893.unknown

_1382527046.unknown

_1382529719.unknown

_1382558828.unknown

_1382529703.unknown

_1382526582.unknown

_1382526702.unknown

_1382526768.unknown

_1382526668.unknown

_1382526377.unknown

_1382526378.unknown

_1382526352.unknown

_1382521654.unknown

_1382523710.unknown

_1382525100.unknown

_1382525575.unknown

_1382524749.unknown

_1382524750.unknown

_1382524685.unknown

_1382524748.unknown

_1382523741.unknown

_1382523555.unknown

_1382521515.unknown

_1382521557.unknown

_1382521594.unknown

_1382521642.unknown

_1382521593.unknown

_1382521550.unknown

_1382521547.unknown

_1382521505.unknown

_1351273013.unknown

_1351273062.unknown

_1350068245.unknown

_1350244183.unknown

_1350132474.unknown

_1350068223.unknown

_1350065574.unknown

_1350068202.unknown

_1350068209.unknown

_1350067657.unknown

_1350067711.unknown

_1350067629.unknown

_1350064887.unknown

_1350065523.unknown

_1350064737.unknown

_1349982399.unknown

_1350064682.unknown

_1350064695.unknown

_1350062900.unknown

_1350062926.unknown

_1350063766.unknown

_1350063144.unknown

_1350063171.unknown

_1350063131.unknown

_1349986835.unknown

_1349986530.unknown

_1349986536.unknown

_1349986274.unknown

_1349986473.unknown

_1349982515.unknown

_1349985360.unknown

_1348258821.unknown

_1348258824.unknown

_1349981458.unknown

_1348258822.unknown

_1348258823.unknown

_1348253142.unknown

_1348258737.unknown

_1223910226.unknown

_1287328575.unknown

_1287328713.unknown

_1348253127.unknown

_1287328671.unknown

_1287328257.unknown

_1065529672.unknown

_1065529719.unknown

_1065528984.unknown

